Part Number Hot Search : 
CTCDR MJE800 GW30NC60 TA100 BUK76 PS2050GC S1610 AD730
Product Description
Full Text Search
 

To Download AP4501GD Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AP4501GD
Pb Free Plating Product
Advanced Power Electronics Corp.
Low Gate Charge Fast Switching Speed PDIP-8 Package RoHS Compliant
PDIP-8
S1 S2 G1 D2 D1 D1 D2
N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET
N-CH BVDSS RDS(ON) ID P-CH BVDSS RDS(ON) ID
30V 28m 7A -30V 50m -5.3A
G2
Description
The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.
G1 S1 D1 D2
G2 S2
Absolute Maximum Ratings
Symbol VDS VGS ID@TA=25 ID@TA=70 IDM PD@TA=25 TSTG TJ Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current 3 Continuous Drain Current Pulsed Drain Current
1 3
Rating N-channel 30 20 7 5.8 20 2 0.016 -55 to 150 -55 to 150 P-channel -30 20 -5.3 -4.7 -20
Units V V A A A W W/
Total Power Dissipation Linear Derating Factor Storage Temperature Range Operating Junction Temperature Range
Thermal Data
Symbol Rthj-a Parameter Thermal Resistance Junction-ambient
3
Value Max. 62.5
Unit /W
Data and specifications subject to change without notice
200622051-1/7
AP4501GD
N-CH Electrical Characteristics@Tj=25 C(unless otherwise specified)
Symbol BVDSS BVDSS/Tj RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Rg Parameter Drain-Source Breakdown Voltage Test Conditions VGS=0V, ID=250uA Min. 30 1 Typ. 0.02 13 9 2 5 6 5 19 5 645 150 95 1.6 Max. Units 28 42 3 1 25 100 15 1030 2.5 V V/ m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
o
Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA
Static Drain-Source On-Resistance 2
VGS=10V, ID=7A VGS=4.5V, ID=5A VDS=VGS, ID=250uA VDS=10V, ID=7A
Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (Tj=25 C) Drain-Source Leakage Current (Tj=70 C)
o o
VDS=30V, VGS=0V VDS=24V, VGS=0V VGS=20V ID=7A VDS=24V VGS=4.5V VDS=15V ID=1A RG=3.3,VGS=10V RD=15 VGS=0V VDS=25V f=1.0MHz f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2 2
Test Conditions IS=1.7A, VGS=0V IS=7A, VGS=0V, dI/dt=100A/s
Min. -
Typ. 16 10
Max. Units 1.2 V ns nC
Reverse Recovery Time
Reverse Recovery Charge
2/7
AP4501GD
P-CH Electrical Characteristics@T j=25oC(unless otherwise specified)
Symbol BVDSS BVDSS/Tj RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Rg Parameter Drain-Source Breakdown Voltage Static Drain-Source On-Resistance 2 Test Conditions VGS=0V, ID=-250uA VGS=-10V, I D=-5A VGS=-4.5V, I D=-3A Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (T oC) j=25 Drain-Source Leakage Current (T oC) j=70
Min. -30 -1 -
Typ. -0.03 9 9 2 5 10 7 27 16 460 180 130 9
Max. Units 50 90 -3 -1 -25 100 15 730 14 V V/ m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25 , ID=-1mA
VDS=VGS, ID=-250uA VDS=-10V, I D=-5A VDS=-30V, VGS=0V VDS=-24V, VGS=0V VGS=20V ID=-5A VDS=-24V VGS=-4.5V VDS=-15V ID=-1A RG=6,VGS=-10V RD=15 VGS=0V VDS=-25V f=1.0MHz f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2 2
Test Conditions IS=-1.7A, V GS=0V IS=-5A, VGS=0V, dI/dt=100A/s
Min. -
Typ. 21 18
Max. Units -1.2 V ns nC
Reverse Recovery Time
Reverse Recovery Charge
Notes:
1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Surface mounted on 1 in 2 copper pad of FR4 board , t <10sec ; 90/W when mounted on min. copper pad.
3/7
AP4501GD
N-Channel
36 36
T A =25 o C ID , Drain Current (A)
24
ID , Drain Current (A)
10V 8.0V 6.0V 5.0V V G = 4.5 V
T A =150 o C
10V 8.0V 6.0V 5.0V V G = 4.5 V
24
12
12
0 0 2 4 6
0 0 2 4 6
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
80
2.0
ID=5A T A =25
60
I D =7A V G = 10V Normalized RDS(ON)
1.4
RDS(ON) (m )
40
0.8
20 2 4 6 8 10
0.2 -50 0 50 100 150
V GS ,Gate-to-Source Voltage (V)
T j , Junction Temperature ( o C)
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
1.5
10
1
Normalized VGS(th) (V)
1.2
IS(A)
T J =150 C
o
T J =25 o C
0.1
0.9
0.01 0 0.4 0.8 1.2
0.6
-50
0
50
100
150
V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature (
o
C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
4/7
AP4501GD
N-Channel
f=1.0MHz
12 1000
I D =7A VGS , Gate to Source Voltage (V) V DS =16V V DS =20V V DS =24V C (pF)
100
C iss
9
C oss C rss
6
3
0 0 4 8 12 16
10 1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Normalized Thermal Response (Rthja)
Duty factor=0.5
10
100us 1ms
0.2
ID (A)
1
0.1
10ms 100ms 1s
0.1
0.05
PDM
t T
0.02
0.1
T A =25 C Single Pulse
o
DC
0.01
Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja =90o C/W
Single Pulse
0.01 0.1 1 10 100
0.01 0.0001 0.001 0.01 0.1 1 10 100 1000
V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG 4.5V QGS QGD
10% VGS td(on) tr td(off) tf Q
Charge
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform
5/7
AP4501GD
P-Channel
20 20
T A =25 C -ID , Drain Current (A)
15
o
-ID , Drain Current (A)
-10V -8.0V -6.0V V G = - 4. 0 V
T A =150 C
15
o
-10V -8.0V -6.0V
V G = - 4. 0 V
10
10
5
5
0 0 1 2 3 4
0 0 1 2 3 4
-V DS , Drain-to-Source Voltage (V)
-V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
240
1.8
I D =- 3 A T A =25
190
I D =-5A V G = -10V Normalized RDS(ON)
1.4
RDS(ON) (m)
140
1
90
40 2 4 6 8 10
0.6 -50 0 50 100 150
-V GS ,Gate-to-Source Voltage (V)
T j , Junction Temperature ( C)
o
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
1.4
100.00
10.00
Normalized -VGS(th) (V)
1.1
-IS(A)
1.00
T j =150 o C
T j =25 o C
0.8
0.10
0.01
0.1 0.4 0.7 1 1.3
0.5 -50 0 50 100 150
-V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature ( o C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
6/7
AP4501GD
P-Channel
12
1000
f=1.0MHz
-VGS , Gate to Source Voltage (V)
10
I D =-5A V DS =-24V C iss C (pF)
8
6
4
C oss
2
C rss
0 0 4 8 12 16
100
1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
-V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Normalized Thermal Response (Rthja)
Duty factor=0.5
10
100us 1ms
0.2
-ID (A)
1
10ms 100ms 1s T A =25 o C Single Pulse DC
0.1
0.1
0.05
PDM
t T
0.02
0.1
0.01
Duty factor = t/T Peak Tj = PDM x Rthja + T a Rthja=90 oC/W
Single Pulse
0.01 0.1 1 10 100
0.01 0.0001 0.001 0.01 0.1 1 10 100 1000
-V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG -4.5V QGS QGD
10% VGS td(on) tr td(off)tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform
7/7


▲Up To Search▲   

 
Price & Availability of AP4501GD

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X